Not Through Ignorance

Hillary: There’s More To Science Than Climate Change

la-na-2016-democratic-national-convention-in-p-208I got temporarily excited during Hillary Clinton’s nomination acceptance speech at the Democratic National Convention.  After boisterous applause for a comment slamming Wall Street, buoyed by the enthusiasm of the arena, she shouted:

I believe in science!

This unleashed another round of applause from the crowd, and I have to admit, my heart swelled.  (To borrow a Hillary phrase, prompting my wife to deadpan, “She should take something for that.”)  A politician had just proclaimed her trust in the scientific method, and an arena full of people from all over America responded with approval.  I had just enough time to raise my hopes for the next, oh I don’t know, 3 minutes of the speech?  2 minutes?  45 seconds?  She continued:

I believe that climate change is real and that we can save our planet while creating millions of good-paying clean energy jobs.

And then… back to immigration.  Science got one sentence, although note that even that one sentence had to share space with Joe Biden’s “three letter word: J-O-B-S jobs!”

This post isn’t about the scientific evidence for climate change or the merits of various public policy positions to combat it.  What bothered me about that passing moment in Hillary’s speech is that for many politicians, climate change is the only scientific issue of our day.  Worse, it has become a litmus test for politicians and for the general public.  If you believe in human-caused global warming, you are pro-science.  If you disbelieve, you are a knuckle-dragger.  And so by boldly proclaiming her appraisal that science has proven that the climate is warming due to industrial activity, Hillary and her supporters can pat themselves on the back and move on in their sanctimony.

Here’s what I believe is great about science.  Science is a system that forces you to weigh evidence and to accept that evidence even when it conflicts with your preconceived notions.  That, in a sentence, is what science is – why it is good, why it is sorely needed.  Understand, this is not to say that all scientists practice this ideal, and it is not to say there aren’t considerable problems in the day to day practice of science.  But over the long haul, it is science – certainly not a particular brand of politics – that deserves the label “progressive”.  Bad ideas are weeded out, and those with the best evidence survive.

So for me, you don’t demonstrate your scientific bona fides by taking one particular position.  You do so if you favor evidence over your preconceived notions.

It takes no courage for a Democrat to stand before other Democrats and remind us that the scientific consensus is that human activity is warming the planet.  That’s a softball in that environment.  What would have demonstrated real courage would have been if Hillary Clinton then went on with my hoped-for 2 or 3 minutes:

“And by clean energy” – riotous applause – “I include nuclear power, the most efficient carbon-free energy source we already have the technology to use!”  Silence.  (Not to inject politics here, but wasn’t the “Iran Deal” all about keeping the Iranians from making nuclear weapons but allowing them to pursue “peaceful” nuclear technology for power generation?  Why do Democrats think it’s okay for the Iranians to develop nuclear power but favor inefficient wind farms and solar fields to nuclear power here at home?)

Although you can now hear a pin drop, I imagine Hillary continuing.  “I believe also in the science that demonstrates that transgenic crop technology is not only safe, but actually increases yields, decreases the need for new farmland, lowers carbon emissions, and is safer for the environment!”  The camera now zooms in on Bernie Sanders, squirming in his seat.  She seems to be boring a hole through his chest as she continues, “We will oppose unnecessary GMO labeling laws, recognizing that such regulations would decrease consumer choice, favor large corporations, increase the price of food, and demonize a promising technology!”

Personalize it, Hillary.  “When I was Secretary of State, I traveled to some of the poorest countries on Earth.  I saw the faces of young children, blinded by Vitamin A deficiency, and met mothers who had buried their children far too young.  As President, I will stand up to anti-science crusaders like Greenpeace to ensure that technologies like golden rice become available to all those in need!”  Several spectators walk to the exits.  A gentleman in the front row with a No GMO hat faints.

Keep harping on your record, Hillary.  “I have made a career fighting for access to health care, especially for young children.  My administration will continue to do so, placing special emphasis on ensuring that all children have access to life-saving vaccines.  I strongly rebuke Robert Kennedy, Jr.’s nefarious demonization of vaccines, and I part with our current President and my opponent Donald Trump in that I unequivocally deny the fraudulent vaccine-autism link!”  The Massachusetts and California delegations suddenly become dizzy.

Show your personal growth, Hillary.  “And speaking of health care issues, let me also clarify my position on so-called complementary and alternative medicine.  Although I was  previously sympathetic to this quackery, having learned more, I now recognize that this is one of the major ways in which our nation squanders precious health care resources.  I no longer consider Dr. Mark Hyman an advisor on these issues.”

“Instead I will support evidence-based biomedical research.  My administration will pursue bipartisan increases to biomedical research funding, which we recognize requires the use of animal models.”  Delegates that give time and money to PETA and the Humane Society of the United States break out in a cold sweat.

“My administration will also fully support NASA and exploration of the universe through telescopic observation.  I challenge the delegates of the great state of Hawaii to overcome unscientific superstition and support bringing cutting edge research to the Big Island.”  The Hawaiian delegation heads for the exit.

“And speaking of unscientific superstition, let me make amends for my earlier embarrassing comments about aliens having visited Earth.  When I made those comments I was uneducated on not only the enormous distances between stars and the impossibility of traveling at speeds approaching the speed of light, I was also ignorant on the psychological sciences on how false beliefs are easily formed.  When I said there couldn’t be so many stories of UFOs unless they were real was a too-credulous comment on my part, and one that I regret.”

Suddenly the entire roomful of delegates – ones that had lustily applauded science belief when the topic was first broached in a fit of self-congratulation – are themselves experiencing regret.  Possibly at their own scientific ignorance, but more likely at having nominated a woman who believes not only in the science consistent with their preconceived notions, but even in the science that does not.  How audacious!

There’s a funny Seinfeld episode in which George Costanza has been experiencing some good fortune, but then becomes worried about a spot on his lip that might be cancer.  He is discussing this fear with a therapist.  He says: “God would never let me be successful. He’d kill me first. He’d never let me be happy.”  His therapist replies: “I thought you didn’t believe in God?”  He answers: “I do for the bad things.”  Take a look at some common left leaning views on climate change, nuclear power, transgenic crops, alien visitations, vivisection.  One wonders if many at the Democratic National Convention do believe in science – but only for the bad things.

Don’t get me wrong, I’m not making any political points in this reaction.  Donald Trump didn’t do any better in defending science or in promising to make decisions as President with science in mind.  But preaching to the choir is easy.  Leading – which sometimes means taking your followers where they don’t really want to go – is hard.  I suppose it is nice that Hillary Clinton wants to be known as a pro-science leader, but if she really wants to be one, she has to adopt a scientific worldview that favors carefully collected evidence over preconceived notions.  To conclude she is pro-science, well – I need to see more evidence.

 

 

 

 

Someone actually wants you to sign a petition to increase Zika and Dengue

Every once in awhile, it is worth repeating the Isaac Asimov quote that inspired the title of this blog:

If knowledge can create problems, it is not through ignorance that we can solve them.

Yet ignorance breeds fear, and fear, apparently, breeds petitions over at change.org.  Facebook served up this little gem for me today:  a petition entitled Say No To Genetically Modified Mosquito Release In The Florida Keys, posted by Mila de Mier.  Her goal of 200,000 signatures is nearly met, despite the fact that there are only 25,000 residents of Key West, and there are less that 100,000 residents in all of Monroe County.

mosquito-gmoIt turns out this petition is quite old (4 years or so) and that the project she was attempting to block has apparently received approval and may be currently underway.  But having experienced the pain of reading the petition, I can’t let it pass without comment.  And even if it is old news, apparently it’s still out there, and so it should still be countered.

The rambling text of the petition certainly qualifies under the heading of ignorance, unless it qualifies as willful lying.  Here it is, with commentary.

Right now, a British company named Oxitec is planning to release genetically modified mosquitoes into the fragile enviroment [sic] of the Florida Keys.

The environment of the Keys certainly qualifies as fragile, but it is hard to understand how mosquitoes could damage that fragile environment.  Hurricanes, certainly.  Another catastrophe with an offshore oil well, perhaps.  Multiplication of the lionfish, maybe.  But mosquitoes?  Indeed, killing mosquitoes might normally require the widespread spraying of insecticide, which, depending on the insecticide in question, might indeed be a challenge to a fragile ecosystem.  So shouldn’t someone worried about a fragile ecosystem be standing up and applauding Oxitec’s environmentally friendly mosquito solution?

The company wants to use the Florida Keys as a testing ground for these mutant bugs.

“Mutant bugs” certainly sound scary, especially if you glance up at that mutant bug image (which I borrowed from the petition itself) – it looks like a meth-crazed (or maybe tomacco-crazed), bloodthirsty killer, outfitted by science with superhuman (supermosquito) powers of destruction.  But “mutants” are rarely more powerful than naturally-selected forms with hundreds of millions of years of evolutionary fine-tuning, and in this case, the mutant and its offspring are designed to harmlessly die.

Even though the local community in the Florida Keys has spoken — we even passed an ordinance demanding more testing — Oxitec is trying to use a loophole by applying to the FDA for an “animal bug” patent. This could mean these mutant mosquitoes could be released at any point against the wishes of locals and the scientific community. We need to make sure the FDA does not approve Oxitec’s patent.

Now I’m lost.  The petition is supposed to be directed at Adam Putnam, Florida’s Commissioner of Agriculture.  He doesn’t work for the FDA.  In any event, the FDA has already issued a preliminary opinion that the project will have no significant impact on human or animal health, to say nothing of the fragile environment of Key West.

Nearly all experiments with genetically-modified crops have eventually resulted in unintended consequences: superweeds more resistant to herbicides, mutated and resistant insects also collateral damage to ecosystems.

This is an outright lie.  Certainly, the so-called Roundup-Ready crops are more resistant to the herbicide Roundup, but crops aren’t weeds, and their resistance to Roundup does not produce resistance to any other herbicide.  Yes, application of herbicide to crops will slowly select for weeds resistant to that herbicide, but that has nothing to do with genetic modification of the crops – it has to do with the schedule of herbicide application, which is equally true for conventional crops.  More importantly, this sentence is a complete red herring – the genetically modified mosquito can’t produce superweeds.  It’s a complete non sequitur.  What exactly is Ms. de Mier (and 170,000 signatories) worried about?

A recent news story reported that the monarch butterfly population is down by half in areas where Roundup Ready GM crops are doused with ultra-high levels of herbicides that wipe out the monarch’s favorite milkweed plant.

I’d like to see this “news story” indeed.  No one “douses” their crops with Roundup, be it conventional crop or Roundup Ready crop.  And research shows that monarch butterfly populations are not limited by the availability of milkweed.  Now, if monarch butterfly populations are declining, that is worthy of investigation.  But nothing Oxitec is proposing to do with mosquitoes has anything to do with butterflies.  Again, if you are worried about butterflies, you should be standing on the rooftops cheering Oxitec and the Florida Keys Mosquito Control District for attempting to eliminate mosquitoes without spraying insecticides that might affect beneficial insect populations.

What about our native species of Florida Keys Bats. Are there any studies being conducted to see if these mosquitoes will harm the native bat population? Why would we not expect GM (genetically modified) insects, especially those that bite humans, to have similar unintended negative consequences?

I’m trying to understand this, but it’s really hard.  What similar negative consequences is she talking about?  Because there are crops that are Roundup Ready and Roundup reduces milkweed and milkweed is necessary for monarch butterflies and mosquitoes are genetically modified and they bite humans… is the concern that we won’t be able to feed human babies milkweed any more?  I’m lost!

But let’s go at this a different angle.  Oxitec wants to kill mosquitoes, and clearly Ms. de Mier is worried that if an Oxitec mosquito, doomed to die, bites a human, then the human might die as well – or at least suffer in some way.  But this concern conveys complete ignorance about how the mosquitoes are modified.  Admittedly, the technology is complex, but the biologists at Oxitec, and the FDA, and thousands of scientists worldwide do understand the technology, and do have justifiable confidence that Ms. de Mier’s fear is completely unfounded.

First, it is female mosquitoes that bite humans, but Oxitec only genetically modifies and releases male mosquitoes.  Thus, even if the GM mosquitoes could pass on some toxin by biting (and they can’t – but even if they could), only non-biting mosquitoes are modified.  But second, and far more importantly, the modification causes the mosquitoes to manufacture a protein that inhibits gene transcription.  This protein quickly causes the cells of the mosquito to cease functioning.  In fact, Oxitec had to build in the ability to turn off this gene prior to releasing these mosquitoes, or they wouldn’t even mature in the lab.  Because the agent is a protein, it is completely harmless to any organism (such as a bat) that might eat the insect, as proteins are normally and thoroughly broken down into amino acids before being absorbed into the body.  And even if Oxitec made a mistake and made a few modified female mosquitoes, and they happened to bite you, and the protein managed to accumulate in the fluids that enter the blood of the person bitten by the mosquito, the injected protein would be in such minuscule amounts compared to the size of the human, or dog, or cat bitten that the effect on any cellular machinery would be too small to measure.  If, indeed, it could have any effect, given that the protein is optimized to work on the gene transcription process of insects.

And by the way, if you are worried that a protein made by a GM mosquito might hurt a bat that eats it or a human bitten by it, shouldn’t you be just as worried for a bat eating or a human bitten by a mosquito doomed to die from an insecticide spray?  After all, insecticides which are sprayed aren’t proteins and may have a much longer active lifespan.  I’m not saying you should be worried about this either – I’m just pointing out that the fear of the technology is entirely due to ignorance, not knowledge.

Will the more virulent Asian tiger mosquito that also carries dengue fill the void left by reductions in A. aegypti?

As far as I can tell, the Asian tiger mosquito is active during more of the day, and therefore might be more likely to bite when people are out and about.  The more bites, the more virulent (capable of causing harm).  This is, so far, the one bit of cleverness in Ms. de Mier’s plea.  Of course, if the tiger mosquito moves in when the aegypti mosquito dies out thanks to Oxitec, then we would expect to see rises in disease rates.  Will Ms. de Mier then greet, with relief and celebration, the dramatic reduction in dengue fever cases in areas where the Oxitec mosquitoes have been released?

Will the dengue virus mutate (think antibiotic resistant MRSA) and become even more dangerous?

Well, after making one halfway decent suggestion, we return to kooky town.  If you are worried about a virus mutating, then you should reduce the virus’s ability to get into hosts where it can replicate and – you know, mutate.  Genetically modifying a mosquito won’t increase the rate of dengue virus mutation.  Indeed, killing off dengue’s host in great numbers is the surest way to reduce the rate of viral replication and therefore mutation.

There are more questions than answers and we need more testing to be done.

If there’s one reliable, laughable bit of hypocrisy you always hear from the Luddites of the world it is this – “We’ve got to stop testing this technology because we haven’t tested it enough!”  Whether it’s Greenpeace destroying a test field of potentially life-saving golden rice, or Ms. de Mier and her 170,000 petition signers trying to stop a field test of the Oxitec mosquito, you can be sure they don’t really want more testing.  Ms. de Mier, this is how testing works.  As the FDA has already ruled and as any professional biologist can tell you, the testing thus far has been more than ample to determine that field tests can proceed.  We know these things are safe to humans and animals, and now we need to find out if it’s effective in lowering transmission of disease.

Having exposed Ms. de Mier as either an ignoramus or a charlatan, let’s check out the comments and see who is signing this petition.

I don’t live in Key West, but I am sick and tired of Monsanto and other biotech companies using the general population as their laboratory! I can control what food I put in my mouth, but I cannot control their poisons blowing onto the crops that I eat, nor can I control getting bitten by mosquitoes! PLEASE do not let this insanity continue! No more genetically-mutated crap on this Earth!

Sandi White, Lowell, MI

Oxitec is not Monsanto.  If you don’t want poisons blowing onto your crops, you should favor development of GM crops which reduce pesticide use, particularly insecticide use.  Crap cannot be genetically modified, only the organisms (like Sandi White of Lowell, Michigan) which produce it (like the comment above).

I am certain that, though Oxitec claims that these mosquitoes will be harmless and/or beneficial, sooner or later it will be discovered that something is horribly wrong with these mosquitoes. Genetic engineering is in its infancy. Common sense dictates that the release of an experimental organism – one that breeds uncontrollably and will undoubtedly transmit antigens to humans and other hosts – into the natural environment is both moronic and irreversible.

Seth Casson, Kihei, HI

We should make all public health decisions on the basis of the certitude of Seth Casson of Kihei, Hawaii, right?  Genetic engineering is hardly in its infancy; it’s been used for several decades and is responsible for major medical advances such as the ready supply of insulin for diabetics and the creation of mouse models for neuroscience research.  The Oxitec mosquito can breed, this is true (that’s the point of releasing them) but the larva will die before maturity.  How is this breeding uncontrollably?  And can we all agree Mr. Casson has used the word antigens while having no idea what it means?

I am also sick of Monsanto and other biotech companies using us as guinea pigs. We really DO NOT need to let loose GM mosquitos into the environment. Whatever happened to the USA being a country “for the people, by the people”? We were never asked if we wanted GMOs released into our environment and polls show that 90% or more of citizens don’t want them. It makes me incredibly sad and angry that the US has become a falsely “democratic” nation. There is very little democracy left if we have no voice.

Mairin Elmer, Fallbrook, CA

Oxitec is not Monsanto.  Would Mr. or Ms. Elmer vote tomorrow to rid the world of insulin, or cheese, or other products largely available due to genetic modification?  I think if you announced to the world they’d have to give up inexpensive cheese, that 90% figure would drop right quick.  Heck, 80% of Americans oppose food with DNA (at least unlabeled).  If we get rid of food with DNA, try surviving on salt.  It’s the only food eaten in quantity that has no DNA.  Of course, the food idiots tell you salt is bad for you too.

I’m signing because I want these atrocities to stop. You can’t mess with Mother Nature & not have something bad happen, they don’t know what they’re doing!!!

Karen Whissen, Newark, OH

Ah yes, the Frankenstein gambit.  You can’t mess with Mother Nature, says Ms. Whissen, pounding angrily on an iPhone constructed of rare metals mined from the earth’s crust.

There’s not much point in going on, I suppose – by definition, if someone signed the petition, the comment is unlikely to be scientifically grounded.  Perhaps, instead, we should take some comfort in the fact that only 170,000 people signed the petition, and not a single one of them could justify that signature with a coherent rationale.

Book Review: Out Of Our Heads

Out Of Our Heads: Why you are not your brain, and other lessons from the biology of consciousness by Alva Noe, PhD (2009, Hill and Wang, New York)

My review (out of 5 stars):  4stars

outofourheadsI routinely teach a course formerly called The Psychobiology of Consciousness and currently called The Mind-Body Problem.  Although I am not a consciousness researcher per se, I was drawn into the field of physiological psychology because of my fascination with this topic.  Like many introspective people, I “discovered” John Locke’s inverted spectrum problem long before I’d ever heard of John Locke:  if you and I are both looking at a red apple, how do I know that your experience of red is the same as mine?  You might see it the way I see the blue sky, or a yellow dandelion; yet having learned the term “red” for that experience – the experience of looking at such an apple – you call it red and beyond that verbal agreement, neither of us have direct access to one another’s subjective phenomenology.  Later, as a graduate student, I learned that there was such a thing as blindsight – a neuropsychological syndrome usually caused by damage to primary visual cortex in which a person becomes blind – yet can paradoxically can recognize objects by sight if forced to guess at their identity.

These examples convinced me that the best way to understand the mind-body problem – the question of how a physical brain can create ineffable subjective experiences (“red”, “cold”, “sourness”) – would be to become a sensory neurobiologist.  Furthermore I began to study the taste system – because of all the sensory systems, that was the one that seemed to have the most circumscribed phenomenological experiences.  Tastes were sweet, or sour, or bitter, or salty, and that was about it.  (Yes strong and weak, and yes umami or oleogustic, but nonetheless, a more manageable range than millions of colors or thousands of auditory pitches.)  Furthermore I styled myself as a researcher in “taste quality coding”, which is to say, I was interested in understanding the patterns of neural activity correlated with those particular experiences.  In that respect my work was in the tradition of Francis Crick and Christof Koch’s suggestion that people interested in consciousness should begin to search for the neurobiological correlates of consciousness – brain activity associated with a particular feature of conscious experience.

Even at the beginning, though, I think I knew there was something wrong with this approach.  There’s a danger in taking the word “coding” too seriously.  When we taste something, some of our taste buds detect the molecules of our food, and cause electrical signals to stream towards our brains.  Eating a sweet apple versus a salty pretzel both cause this electrical activity, but presumably the activity is different in some way for the apple than it is for the pretzel – hence we can tell the difference, and hence we experience sweetness in one case and saltiness in another.  Whatever that difference is we might call the code for taste quality.  Like a code, the meaning (“sweetness”) is in a different “language” (a barrage of electrical impulses).  However, a code implies decoding – someone or something will translate the message and experience the sweetness as a result.  But is this really what happens?  There’s no little guy inside of our brains that decodes the message.  Our brains operate on the language of electrical impulses: there’s no need for a decoding at all.  This was a thought illusion one of my scientific heroes, Robert Erickson, tried (mostly in vain) to disabuse his colleagues of.  One colleague who was sympathetic was Bruce Halpern, whose article “Sensory coding, decoding, and representations: Unnecessary and troublesome constructs?” must have pleased Erickson when it was presented at a festschrift in his honor.

Regardless of concerns about decoding, there is still the question of where our subjective experiences come from.  The working assumption of Crick and Koch, obviously, is that they come from brain activity.  Most people believe that only organisms with brains are conscious – I am conscious, the rock is not.  My dog is conscious, my tomato plant is not.  But if this is right (and when I get around to talking about Alva Noe, I will point out that he does not think this is right – or rather, that this is not the whole story) – then there is an interesting problem.  Our brains are made up of 80 billion neurons (and hundreds of billions of glial cells) which are not in physical contact with one another, yet we seem to have only one unified consciousness.  How is such a thing possible?  (And Noe would chime in here: and why is the skull a magical barrier?)

Imagine we were to remove one of these 80 billion neurons.  Or a million.  Or a billion.  Such things happen all the time of course, as a result of aging, neurodegenerative disorders, strokes, head injury.  These events may change someone’s behavior, but they do not eliminate consciousness.  But how far could we go?  How many could we eliminate?  (One could ask the reverse question: when does consciousness emerge in embryological development?)  There’s really no principled way to give an answer to this question.  I think, in fact, that it was because of this problem that the renowned philosopher David Chalmers proposed a radical solution.  Unable to draw a line, Chalmers proposes that no, we’re wrong, the tomato plant is conscious too.  And so is the rock.  Chalmers proposes that consciousness is a fundamental property of the universe, like mass, and that (somehow) the magnitude of the consciousness is proportional to the amount of information involved.  If this sounds loopy, I think it does too.  If I get around to reviewing one of his books, I’ll say more.

Alva Noe (remember him?  This essay is about him!) has a very different answer to this conundrum.  Noe believes the mistake is to start with the premise that consciousness occurs inside of us, inside of our brains.  He doesn’t believe the neurobiological correlates of consciousness will reveal anything about the mind-body problem.  Instead of going inward, more and more restrictively (as Penrose and Hameroff do, with their idea of consciousness as a product of the quantum states of microtubules – an idea even loopier than Chalmers’ panpsychism), Noe goes more expansive.  Noe suggests that consciousness is not something in us but something we do – and that it encompasses (is encompassed by?) our interactions with the world (including all that we are perceiving at the moment and all that we are acting upon).  We should be looking not for consciousness in our brains, or even worse, in some small part of our brains (the microtubules of Penrose or the dynamic core of Gerald Edelman and Giulio Tononi), but rather in the dynamic interactions of a situated agent in its locally-accessible environment.

This may also sound like a loopy idea, but I don’t think so.  Consider the following exercise I have my students try in the first week of class.  Take a pencil and close your eyes.  Now draw a tree on a piece of paper.  As you move the pencil, ask yourself the following question:  as you are guiding the pencil, do you in some sense “feel” the paper through the tip of your pencil?  Most people do.  (And the golfer “feels” the ball hitting the club, the blind man “feels” the grass with his cane, the gardener “feels” the roots of the bush with her rake.)  Of course what’s really happening is the pencil, or the golf club, or the cane, or the rake, is vibrating against our hand and fingers in a way that we’ve learned to ascribe that to that other feeling.  Except that’s not quite right either, since if we are our brains, what’s really really happening is that the vibrations against our hands and fingers are causing neural activity in the hand region of primary somatosensory cortex (or somewhere “beyond” that in the neural circuitry).  Or maybe the first description is right after all.  Noe would argue for that more expansive view of our bodies as extended.  The voice from across the room is experienced as being across the room, not in our auditory cortices and not in our eardrums.

These kinds of examples are discussed in Noe’s Chapter 4 (Wide Minds) where he also reviews some of my favorite studies from my class.  There is the rubber hand illusion, in which an experimenter touches a fake hand which is visible to the subject while simultaneously touching (in the same relative location) the subject’s actual hand (hidden from view).  Over time, the subject experiences that rubber hand as part of his or her own body, and have the experience that the touch is being felt from the rubber hand itself.  (If you watch the video linked here, be warned that the explanation provided for the effect falls into the usual trap that Noe objects to in his book).

Noe addresses related experiments in his Chapter 3 (The Dynamics of Consciousness) which is the chapter where his book really begins to gather momentum.  Here, he addresses the rewired ferret experiments of Mriganka Sur.  These technically arduous and brilliant experiments (with one outstanding flaw, in my opinion, which maybe I will write about another time) essentially produced ferrets in which information from the eyes was redirected to primary auditory cortex.  These ferrets behaved like they still experienced vision despite this redirection, and features of the auditory cortex developed a visual cortex like character.  In the battle, in other words, between the brain (I’m auditory cortex, therefore you shall hear) and the dynamic interactions of a situated agent in its locally-accessible environment (to coin a phrase), the latter wins.  The sensory-motor contingencies were visual, so the experience was visual, despite the identity of the brain region.

Related, Noe also describes another favorite of my Mind-Body class: sensory substitution, especially the work of Paul Bach y Rita.  Rita was interested in developing a technology that might help the visually impaired.  In the original incarnation, blind subjects were seated in front of a large TV camera, which they could direct at an object.  The camera’s view would then be translated as little electrical tingles on the subject’s back, isomorphic to the scene.  So if the camera was pointing at the letter X drawn on a chalk board, the subject would feel a X-shaped set of tingles on his or her back.  The technology improved over time, so that now the camera can be placed in a pair of sunglasses, and the electrode array is placed on a small pad worn on the tongue.  Although Noe oversells the phenomenon a bit in his description, Rita describes the experience as visual or quasi-visual – at least, it is unlike touch.  This phenomenology emerges once the subjects have some experience with the system, and is much more powerful when the subjects are in control of the camera.  That is, pointing the camera at a stationary X is much less useful than panning the camera (now, by moving the head back and forth) – a behavior that is also very visual in nature.  Even more exciting, users can duck to avoid objects or, alternatively, catch them.  When visual objects approach us, they “loom” – they grow bigger.  This does not occur (in nearly the same way) with somatosensory stimuli – so experienced users of this system immediately equate a spreading of the electrical tingles with an approaching object.  They also quickly learn how to move their heads to get more information about an object, again, not a natural somatosensory behavior.  Again, he have a case where the sensory-motor contingencies seem to specify the conscious experience rather than the brain area activated (here, the tongue region of somatosensory cortex).  The dynamic interactions of a situated agent in its locally-accessible environment, once again, is explanatory.  (See also a recent exciting paper by Julia Ward and Peter Meijer.)

There are problems with Noe’s ideas too.  Phantom limb pain is a difficult condition faced by many amputees in which they continue to feel their non-existent limb – and often it feels excruciating.  The usual explanation is that the lack of neural inputs from the hand to the somatosensory cortex produces a change in the brain so that this area is now dominated by inputs from other places – such as the face.  Touch to the face is then felt in the hand (a case of the brain region winning over sensorimotor contingencies).  There are also dreams and hallucinations – where sensorimotor contingencies would seem to have no explanatory power for a phenomenological experience – where the only thing that seems to be happening (correlated with the experience) is neural activity.  To his credit, Noe takes on these situations.  In some cases I found his explanations compelling (as with dreams) but in other cases less-so (as with phantom limbs).

Noe’s Chapter 6 is titled The Grand Illusion, which is how I first came to know of Noe’s thinking (he authored a paper called “Is The Visual World A Grand Illusion?” which I have used for many years in class).  His answer to this question, by the way, is essentially “no”.  Since this is probably most people’s answer to the question, one would wonder why such a paper would need to be written, which means I must do some explaining.  Consider the examples I gave at the start of this essay.  When we hear the sound of a distant voice, we experience the voice as coming from far away.  In a sense, this is an illusion: the only reason we can detect the voice is that air molecules (set in motion by the speaker’s vocal cords) cause our ear drums to vibrate.  Nothing about the way they vibrate indicates the origin of the voice that set them in motion.  Likewise, we see the world in 3 dimensions: my coffee cup I see as being at arm’s length, my door is several feet away.  But this too is something of an illusion.  The only way I see these objects at all is that the reflection of light from them falls on my 2-dimensional retina.  The brain, it would seem, creates the illusion of 3-dimensions.  (Obviously a useful illusion, as it proves to be accurate when I reach for the coffee cup.)

But furthermore – so the story goes – we experience our visual worlds as being all in focus, and we experience ourselves as being able to easily detect changes in our environment.  But a moment’s experimentation should prove that very little of the world is in focus: concentrate on any word on the screen of this essay, attempt to keep your eyes still, and notice that only that word is in focus.  Also consider that magicians can easily fool audiences with sleight of hand tricks in which we fail miserably at detecting changes in our environment when we are distracted.  (This is related to the psychological phenomenon of change blindness.)  Noe describes the fact that many philosophers and psychologists have made much hay of these phenomena: that we have a false belief about the completeness of our perceptual worlds – and that this is the grand illusion.  Noe argues that we do not in fact have false beliefs – or at least, that our behavior belies this.  We are constantly shifting our eyes, tilting our heads.  The artist does not look once at his or her portrait subject and draw from memory; the artist is constantly studying and restudying the subject throughout the sitting.  We do not act as though we build up a representation of the world in our heads for constant consultation – we do not have to.  The detail is not in our heads, it is in the world.  Our feeling of the completeness of our perceptual experience is not, Noe would say, an illusion of the completeness of an internal representation of the world but rather an awareness – based on a lifetime of experience – that we have access to all that rich detail by employing the right, basic skills – eye movements, head movements, body movements.  Again, Noe is reinforcing the point that consciousness is not in us but rather consists of what we do – the skills that we use to interact with the world.

For the neuroscientist – and for the taste quality coding theorists of the world – this hits home.  Much of the program of sensory neuroscience has been based on understanding how stimulus features are represented in neural activity.  In Chapter 7 (“Voyages of Discovery”), Noe takes on the giants of my field – David Hubel and Torsten Wiesel – Nobel Prize winning neurophysiologists.  (Theoretical critiques aside, Hubel & Wiesel’s contributions to neuroscience are unassailable.)  Noe notes that their discovery of the responses of visual cortex neurons – in anesthetized animals – was responsible for decades of research and thinking in neuroscience focused on understanding feature representation (which reached its most Baroque form with the probably misguided work of the genius David Marr.)  The kind of reification of the duties of neurons or brain areas, and the eventual (also misguided) “modular brain” theories of cognitive science, are a long way from the warnings of Erickson and Halpern, cited earlier, that representations and internal models may not be necessary to explain behavior.  (Mental representations or fuzzy modularity may still have some utility – but Noe would probably disagree.)  Noe’s critique of Hubel and Wiesel was certainly the boldest part of the book, and for that reason, one of the most important.

In the end, then, I found Alva Noe’s book full of important ideas.  He reviewed a number of key phenomena in psychology and neuroscience.  He called out the hidden dualism of active programs in neuroscience.  As effective and as thought-provoking as the book was, though, it still didn’t help me understand why that apple was red, and why it tastes sweet.  The how of the mind-body problem still nags, but in part thanks to Noe’s writings, I am excited that we may have a better idea of the where.

A Gene By Any Other Name…

An acquaintance of mine, on a message board, recently played the Frankenstein gambit in a discussion about the politicization of science.  Here’s his quote (modified slightly to improve readability):

You seem to be ignoring the Frankenstein aspect of genetically modified crops in that genes are being inserted that are entirely alien to the organism…the kind of mutation that would never occur in a natural environment. Yes, it’s the point of GMO, a pretty powerful technology that has been harnessed to this point successfully…what might a failure in this technology look like?

dishsoapAt some point before or after this comment, my acquaintance expressed a preference for hybridization to generate new crop varieties, rather than transgenic technology, and also argued that “tampering with nature can be very wrong.”  This appeal to nature, essentially the converse of the Frankenstein gambit, seems to be a powerful (if fallacious) argument that can be applied to any new technology (including, at one time, hybridization).  Indeed, this appeal is so powerful that many pseudoscientific websites adopt appeals to nature in their very URL (such as Natural News, RawForBeauty, and so on).  It’s also why companies are falling all over themselves to get the word “natural” into their product names.

In any event, my main objection to the Frankenstein gambit is not so much the appeal to nature (grating as that is), but rather its reliance on a very superficial understanding of genes.  That superficiality is betrayed by the comment that transgenic technology requires the insertion of genes which are “entirely alien to the organism”.  Unfortunately, scientists compound this problem.

Genes Make Proteins, Not Organisms

Consider golden rice.  This remarkable transgenic crop will save millions of lives by providing a staple food with beta carotene, a nutrient our bodies convert into vital Vitamin A.  The original incarnation of golden rice borrowed a gene from the daffodil and a gene from a bacterium in order to alter the nutritive characteristics of rice.

An unfortunate and misleading way of describing this would be to say that scientists put a bacteria gene and a daffodil gene into rice (reread my original description and note the different semantics).  This way of phrasing invites the Frankenstein image: a monstrous rice, cobbled together from bits of bacteria and bits of daffodil.  Who wants to eat bacteria?  (Never mind that we shovel trillions of bacteria down our throats every day.)  Who wants to eat daffodil?  Yuck!

By calling a gene a daffodil gene, we imply that the gene’s job is to make a daffodil.  We imply that the rice now has daffodil-like qualities.  But that’s not at all what happens.

Consider an analogy.  Jack is a contractor, who’s been hired to build an elementary school.  Naturally, this requires purchasing a lot of raw material – bricks, wood, drywall, insulation, pipes, paint, wire, fixtures, tile, shingles, nails, screws, and so on.  After the job is done, he has a few hundred bricks left over.  He is contracted next to build a private residence for Tom, a home-owner, and he says to Tom, “You’re in luck, I happen to still have a few hundred bricks from the school project, so I’m willing to offer you a discount.”  Tom, revolted, complains, “Those are school bricks, Jack.  I’m asking you to build me a house.  I would go crazy living in a school.”

genecodeGenes don’t make organisms, any more than bricks are limited to making a particular kind of structure.  Genes make proteins.  In fact, they don’t make proteins in isolation; they contain a recipe for making a protein (in the form of the genetic code) in the presence of cellular machinery capable of converting the gene’s instructions into a working protein.  This requires the participation of enzymes for transcribing the gene into messenger RNA, organelles like ribosomes for anchoring the growing protein, nucleic acids (in the form of transfer RNAs) to deliver the amino acids to the protein, and any number of additional enzymes for facilitating the process and shaping the final result.  Amazingly, a human cell is capable of faithfully (or nearly faithfully) reading the instructions of genes borrowed from virtually any other life form on earth.  The implication of this astonishing fact is that genes aren’t proprietary to particular organisms – we share far, far more in common with the source of any “alien” DNA than most people realize.

Rather than refer to one of golden rice’s transgenes as a daffodil gene, it would be more precise to refer to it as a phytoene synthase gene.

The gene doesn’t make daffodils, or the mysterious essence of daffodils: it makes (in the right cellular environment) a protein called phytoene synthase.  The protein gets its name from its ability to synthesize phytoene from precursor molecules.  In the right environment, this molecule will be further processed to beta carotene.  Amazingly, the rice grain is just such an environment.  Even though the rice grain lacks phytoene synthase, it contains all of the other enzymes required to make beta carotene (except phytoene desaturase, which is why two transgenes are required for golden rice).

Is there any justification for calling this a daffodil gene rather than a phytoene synthase gene?  It wouldn’t seem so.  Bricks aren’t just used to build schools, and neither is phytoene synthase just used to build daffodils.  This enzyme is found in a myriad organisms; this table shows a partial list.

In fact, today’s golden rice doesn’t make use of the gene from the daffodil.  Instead it uses a gene from corn.  Both daffodil and corn make beta carotene.  Vitamin A is Vitamin A, whether it comes from eating daffodil (not recommended), corn, golden rice, or regular rice sprinkled with vitamin A from a multivitamin pill.  The gene from the corn causes rice to make more than 20 times as much beta carotene as the variety using the gene from the daffodil, which is why it was used.  How can this be?  I presume the genes are slightly different: even though both proteins allow the synthesis of phytoene, the corn’s protein must be slightly different, such that the reaction occurs faster in corn than daffodil.

Don’t let this fact trouble you.  The bricks Jack ordered for the school might differ slightly from the bricks he would have ordered for a private home, but that doesn’t necessarily make them incompatible.  It might even make them slightly better, like when they overbook your flight and offer to let you sit in First Class rather than Coach.  In any event this subtle variation in gene products brings up another important issue: how evolution works.

Evolution Isn’t Directed To A Purpose

My correspondent quoted above makes another interesting assertion.  He says that a gene dropped into rice from a daffodil (for example) is “the kind of mutation that would never occur in a natural environment.”  On one hand he may simply be saying that daffodils and rice can’t have sex with one another to “naturally” mix their DNA.  But if we read his statement literally, he seems to be suggesting that daffodils and rice are so dissimilar – so alien to each other – that you’d never have rice arise with the ability to make beta carotene through natural means.

vitaminCBut that’s just wrong.  In fact, rice does make beta carotene.  It just doesn’t do so in the grain part of the plant that we eat.  Furthermore, rice does make other enzymes required to synthesize beta carotene in the grain, suggesting that a relatively minor mutation could reinstate the synthetic pathway.  It may even be that minor mutations caused the rice to lose the ability it once had.

Humans, for example, don’t make the enzymes required to make Vitamin C, though some fairly closely related organisms can (see figure; black lines are Vitamin C producing animals and gray lines are Vitamin C requiring animals).  Given that Vitamin C is absolutely vital to survival (it is estimated that about 66 times as many British naval personnel died in the Seven Years War from Vitamin C deficiency – scurvy – than those who died in battle), it is difficult to see that loss as being adaptive.  Ask anybody at the risk of dying of scurvy if they wouldn’t like to borrow a gene from a rat or a lemur or a cat or a rabbit that permits their body to synthesize this life-saving substance.  The fact that human ancestors had this ability, but modern humans don’t, is an accident of evolution that was possible only because humans evolved the ability to eat a diet rich in Vitamin C.  This is probably the only reason that the failure to make endogenous Vitamin C doesn’t effect one’s genetic fitness – or rather didn’t, until man invented sailing ships that could stay at sea for weeks at a time.

Thus, also evolution generally enhances the genetic fitness of a species over generations, it does not always provide individuals with the ideal genetic complement.  And, even if it does, changes in the environment or in the milieu of a species can undermine that adaptability.  Thus, when young men started sailing during the age of exploration, a new vulnerability – scurvy – became apparent.  Thus, when mankind became agrarian and discovered that rice was the easiest, least expensive, most reliable crop in certain parts of the world, Vitamin A deficiency suddenly became a killer.  Whereas my friend views the current human genome as something sacrosanct, not to be tampered with, I view it as a halfway decent compromise, generated by a trial and error mechanism which, while a solid foundation, could stand quite a bit of improvement.

evolution-natural-selection2011-17-728How does evolution work?  Evolution is a 3-step process.  First, you must have variation.  Variation includes both different alleles (versions) of the same gene across members of a population, and also includes the emergence of spontaneous mutations through copying errors in the DNA.  Next, you must have selection.  In the natural world, selection is, essentially, early death: those most-adapted to an environment are more likely to survive than those poorest-adapted.  Third, you must have inheritance:  children must resemble their parents.  Thus, the survivors pass on their genes to the next generation, whereas those who experienced an early death, do not.

Evolution doesn’t just work in the natural world.  It works everywhere those 3 factors exist.  Why were there no reality TV shows 30 years ago, whereas now every other show is a reality show?  Because there was variation – in this case, innovation – reality shows probably starting with MTV’s The Real World began to be added to the variety of TV shows available.  Then there was selection – the reality shows attracted viewers, made money, and thrived.  Then there was inheritance – the reality shows were renewed for additional seasons, and produced spin offs and copies – and you had an evolution of TV programs.  One can tell a similar story about how SUVs suddenly came to dominate American roadways,  how certain funny videos go viral, or how certain breeds of dog become popular.

However – and this is a key point – selection can only work on the varieties currently in existence.  Consider another analogy.  Jenny and I are coauthoring a magazine article together.  We decide that Jenny will write the first draft, and I will edit her draft and add my own comments to it.  It must be obvious that this very well could result in a very different article than if I wrote the first draft and she edited it.  My job will be to select and shape her ideas into something better – but this is a very different process than producing a first draft myself.  Evolution works in this way – selection is a wonderful mechanism for increasing the fitness of organisms, but selection can only work on the genes currently in the genome.  This is why I say that I view the human genome as having been arrived at through a bit of a slapdash process.  We happen to have these particular genes, I suppose we might call them “human genes”, but I don’t attach too much importance to that.  Our lack of having certain genes was, in some cases, merely an accident of they way things played out  In addition: 1) Many other organisms have many of those same genes, and 2) We have the ability to use other organisms’ genes just fine, as they may use ours just fine.  I elaborate briefly each of these points below.

Human Genes (If You Must Call Them That) Are Found Naturally In Other Species As Well

Earlier I pointed out that a good number of plant species have the capacity to produce phytoene synthase, so much so that it was a bit pointless to call the phytoene synthase gene from the daffodil a “daffodil gene”.  The same can be said for the human genome as well.  Because of evolution, useful variations which cropped up in our ancestors hundreds of millions of years ago are still with us today – and still with many of our evolutionary cousins such as lemurs, or foxes, or pigeons, or squid.  Because genes are composed of hundreds or thousands of codons (sets of base pairs that specify amino acid constituents of proteins), the genes are often slightly different in one species or another, but that’s also true comparing one human to another.

But we have so much in common with other animals (indeed, this is why neuroscientists often study other animals – not to learn about monkeys or rats or worms or fruit flies, but to learn about ourselves).  GABA, for example, is one of the most important neurotransmitters in the human brain – but you’ll also find it in the nervous systems of most animals.  Why?  Because many species make the enzyme that converts glutamate into GABA – because we all tend to have the gene that specifies the recipe of a protein that will serve this function.  In fact any time you hear about some molecule that’s found in both humans and animals, it is very likely that some gene is responsible for making that molecule, or that some gene is responsible for making an enzyme that catalyzes the synthesis of that molecule.

Thus it is possible to say that we share 98% of our genes with chimpanzees, 85% of our genes with the zebra fish, and 21% of our genes with roundworms.

Consider the discovery that insulin injections can alleviate the symptoms of diabetes.  Insulin is a very large molecule and thus not practical to synthesize in a laboratory, so originally the insulin was harvested from the pancreas of cows and pigs.  The reason this is even possible is because cows and pigs make insulin too (as do any number of species), and although there may be slight differences in the cow, pig, and human genes and therefore the cow, pig, and human insulin peptide, our cells respond to this animal insulin sufficiently enough that this “alien” insulin saved people’s lives.

I imagine there are any number of people who are squeamish at the thought of genetic modification but are perfectly okay with the idea of injecting cow insulin to treat diabetes.  It is difficult to understand why.  Surely grinding up cow pancreas, purifying the juice, and injecting it into a human is “unnatural”.  Yet we recognize that many useful drugs can be derived from not only animals but plants, and we are used to the idea of putting these foreign substances in our bodies.  Why play the Frankenstein gambit when it comes to GMOs?

We Have The Ability To Use The Genes Of Other Species (And Vice Versa)

But that’s not the best part of the insulin story.  The best part of the insulin story is that we no longer have to grind up the pancreas of farm animals to supply the diabetics of the world with insulin.  If you think carefully about where that insulin is coming from, the solution is obvious.  A cow’s pancreas (like ours) contains cells whose job it is to release insulin when the organism eats a caloric meal.  (The insulin is a signal to cells all over the body to prepare for the coming rush of energy.)  Because the pancreas has to release insulin every meal (3 or more times a day in us, and awful lot more than that in a grazing herbivore like the cow), those cells have to keep making insulin or they will run out.  Each time the cells have to make insulin, the insulin gene in the cow’s DNA is copied to a messenger RNA strand, and that messenger RNA’s genetic code for the insulin peptide is “read”, line by line, by transfer RNA molecules that build the growing molecule.

Point is, you don’t need a whole cow to make insulin.  You just need certain cells in its pancreas.  But actually, you don’t even need that.  You just need the gene, plus the cellular machinery for making proteins.  Once you have that, you have an insulin factory.  Because all organisms share so much in common, the cellular machinery for making proteins exists in pretty much the same form in pretty much any living cell on the planet.

dna18

The solution?  Rather than kill a bunch of cows, take a copy the human version of the gene for making insulin, and place it into a yeast cell or an E. Coli bacterium.  Not only have you made an insulin factory, but you’ve made one that self-replicates.  Just feed it, come back tomorrow, and you’ve got thousands of insulin factories.  Not only that, but they’re cranking out pure insulin, reducing the possibilities of impurities (from the cow or pig) causing allergic reactions in the diabetic patients.

There’s another name for this insulin factory.  It’s a genetically modified organism.  (Shhh!)

The Last Question

The only thing I haven’t responded to in my acquaintance’s post is “What might a failure in this technology look like?”  My response to this question would be to point out the kinds of failures that won’t happen – failures imagined by the people who don’t understand the technology:

  1. You won’t be altered in any odd way by eating a genetically modified crop.  Although I’ve emphasized the remarkable fact that E. Coli can read our genes, and therefore that we can read the genes of, say, some herbicide-tolerant ear of corn, that only occurs if you put the genes into the nucleus of some cell.  Everything we eat contains DNA (except salt), but none of that DNA – “natural” or “modified” – can be incorporated into our cells.  We enzymatically break down proteins and nucleic acids before we absorb them.  In some cases that’s unfortunate – if someone eating golden rice suddenly gained the ability to make their own Vitamin A, that might not be a bad thing!
  2. You won’t gain some strange allergy to the genetically modified food you eat – though I wouldn’t be so sure about new varieties that appear from hybridization.  Genetically modified crops undergo safety testing – something not required of more “natural” means of creating new varieties.  Yet there is no principled reason to require it in one case but not the other.
  3. We won’t experience some collapse of the food supply because GM crops become so popular we end up with a monoculture problem.  There’s nothing inherently different about GM crops from other specialty crops, so such concerns aren’t unique to GM.  And in many cases GM crops are adding needed variety – as, for example, in the case of the banana.
  4. We won’t unleash some kind of superplant or superfish that destroys the ecosystem.  The Frankenstein gambit also invites the notion that we are creating Wrath of Khan type super beings that can out-compete their natural rivals.  But any farmer can tell you how difficult it is to maintain a thriving farm – our crops survive not because they’ve been bred to be evolutionary winners; they survive because farmers provide them with round the clock tender loving care.  Not to mention water, nutrients, pesticides, and, I suppose, scarecrows.  Varieties selected or modified to better tolerate farm conditions are unlikely to be especially suited for spreading outside the farm.
  5. We won’t destroy natural plants through inadvertent cross-breeding with modified plants.  Surely some plants will escape the farm, but a GM crop is so minutely different from the standard crops (one or a few genes’ difference) that you wouldn’t be able to distinguish an all-natural variety from a cross-breed.  Nor is it likely that the new genes will significantly spread through the native populations.
  6. We won’t unleash some environmental destruction by creating crops that can withstand pesticide application or which endogenously produces pesticides.  On the whole, GM crops significantly improve the environment.  Crops that make their own pesticides don’t have to be sprayed, minimizing leakage of pesticides off-farm.  Decreased use of pesticides will also minimize crop dusting and use of farm machinery and therefore usage of fossil fuels.   As better-able to tolerate the farm environment, more crop can be grown on less farmland, minimizing the encroachment of farmland into native forests.  All of these benefits have already been documented.

frankenstein_moster__karloff_by_jespadas-d4yxl0iWhat fears are left?  I don’t know, I can’t get into that head-space very easily.  The failures of the technology which are the most plausible are basically the same kinds of problems that occur with all modern agriculture.  Growing lots of food puts a stress on the environment.  On the whole, modern ag is a godsend to human comfort and longevity, but as with most things that cause major benefits, the industry comes with major trade-offs.  The point is that GM doesn’t add anything new to those trade-offs and, if anything, begins to minimize some of the problems that already exist.

It’s been a long time since I read Frankenstein, but wasn’t one of the morals to that story that the monster wasn’t so bad – it was the people’s reaction to the monster that was regrettable?  Well, if not, that’s how I would have written it.

P.S.  Bonus points to those of you who know that The Last Question is this post’s Asimov Easter Egg.  Double bonus points if you read this whole damn article.

Book Review: Mindless Eating

Mindless Eating by Brian Wansink, PhD (2006, Bantam)

My review (out of 5 stars): 4halfstars

midlesseatingI don’t own too many books whose cover features a rave review from O: The Oprah Magazine.  I also don’t own any other book that might remotely fit in the category of “diet advice books”.  Most of that genre, in my opinion, ranges from despicable to utterly useless.  But this book is different.

It is also a book I know well.  The occasion of my writing this review is having completed reading the book cover to cover for the fourth time.  Three of these read-throughs have been in conjunction with a class of senior psychology students as part of a course called The Psychology of Eating and Drinking Behavior.

Mindless Eating was written by Brian Wansink, a decorated scientist who holds an Endowed Chair at Cornell University.  While Wansink’s book is full of practical advice for people trying to control their weight, his suggestions are evidence-based.  He is a research scientist with a gift for designing revealing experiments of impressive creativity.  While one could probably lose weight by applying Wansink’s many suggestions, for me the joy of the book is as a fellow research scientist appreciating the cleverness of the studies he has designed and carried out.

But even as a practical book on dieting, this one is different.  Many popular diets are focused on physiology – and often on unproven physiological theories, or theories generalized far behind evidentiary support.  Thus we get low fat diets, or low carb diets, or protein diets, or restriction diets, or avoid processed foods, or eat what our caveman ancestors ate – any number of theories borne out of the belief that what we eat is crucial, and that what we have been eating isn’t good for us.

Wansink makes no such suggestions about what we should or shouldn’t eat.  Wansink is a “calories in – calories out” theoretician – he believes that what we eat is not nearly so important as how much we eat. This shifts the attention away from understanding physiology and toward understanding behavior.  The issue for him isn’t what happens to the food as it goes from our intestines into our bodies, but rather as it goes from the package or the plate or the buffet line into our mouths.

Another refreshing perspective in Wansink’s book is that he doesn’t really have any villains, other than that old classic – human nature.  He doesn’t blame fast food companies, or modern farming practices, or marketers, or any of the other favored targets of our modern ills.  To be sure, all of these are important aspects of our food environment which collectively make gaining weight easy, but the solution to gaining weight isn’t to battle these behemoths – it is to control our own local environments.

Enter the clever experiments.  A movie popcorn bag adorns the cover of my paperback version of the book, alluding to an experiment in which he gave free popcorn to movie-goers in exchange for patrons filling out a short survey at the end of the movie.  The popcorn was purposefully made stale (popped several days in advance), and patrons were either given a large container or a medium container (the medium still so large that no one could eat all of it).  The result?  Patrons given the large container ate considerably more than patrons given the medium container.  Again, since no one even came close to finishing the medium container, the implication is that the size of the package – more than the taste of the food or the filling of our stomachs – suggests how much we should eat at a sitting.  Consider this the next time you open a huge bag of potato chips that’s mostly air – the bigness of the container may cause you to overeat.

His book covers many replications and extensions of this package size effect.  In one case, invitees to an ice cream social put away more ice cream when given a larger bowl and/or a larger scoop to serve themselves with.  In another, Wansink invented a bottomless soup bowl, in which research subjects ate tomato soup out of a bowl that was unnoticeably being refilled from below.  Again, while even the control group (eating from normal bowls) didn’t finish all of their soup, the bottomless group at almost twice as much – favoring the opinion of their eyes over the opinion of their stomachs.

Wansink and others have also studied whether this prejudice of the eyes can be used to someone’s advantage.  He mentions the work of Barbara Rolls, who made smoothies for two groups of subjects.  In one group, she whipped the smoothies longer, which adds more air to the mixture, fluffing up the smoothie.  Thus one group was eating a smoothie with half as many calories as the other, but in both cases the smoothie was one full glass.  Each group was equally satisfied, and the amount they ate at a later meal depended not on how many calories were in the previous smoothie, but rather how filling the previous smoothie looked to the eye.

In Wansink’s version, he had students attending a Super Bowl watch party with an all-you-can-eat chicken wing buffet.  For half the tables, servers removed the bones as the chicken wings were consumed, and for the other half of the tables, the wing bones were allowed to pile up.  The students who could see the evidence of their consumption – the bones piling up – ate less than those whose tables were frequently bussed.  Both groups could rely on their stomachs, but didn’t.  Informally, Wansink says he leaves empty wine and beer bottles out at parties he throws, to reduce the alcohol consumption of his guests.

Besides visibility, relatively minor increases in the amount of effort required to get access to food can have surprisingly large effects.  Moving a candy dish across the room – still visible, but now requiring an office worker to get up and take a few steps to obtain it – decreased eating behavior substantially.  Wansink suggests making food just slightly more difficult to obtain as a general strategy.  Plate your food in the kitchen rather than at the table, so getting a second helping requires returning to the kitchen.  Pour potato chips into a bowl, so getting more requires getting the bag out of the pantry again.  Move fruit and vegetables out of the crisper drawer and onto the middle shelf of the refrigerator to increase the probability of selecting a healthier snack.  In school lunch rooms, he suggests moving healthy snacks next to the register into “impulse buy” position.

Another set of studies examined the effect our expectations have on our appreciation of food.  Subjects given strawberry yogurt to eat in the dark believed in was chocolate yogurt simply because they were told so.  Subjects given brownies on a paper napkin rated it less tasty and were less likely to buy more than subjects given the same brownie on fancy china.  Patrons in a test restaurant presented with a free bottle of North Dakota wine spent less time eating their food and rated their meal as less appealing than patrons eating the same meal given a free bottle of California wine.  In reality, the wines were identical with only labels changed.

Similar effects were seen in a Hardees restaurant in which one room was temporarily given a make over to play calming music, table cloths, and table service.  The same fast food was rated as tasting better and patrons spent an extra 10 minutes enjoying their meal during a busy lunch hour.  Back in the test restaurant, half of the diners ordered from menus with plain food descriptions, and the other half ordered the same food from menus loaded with adjectives.  The adjective menu diners ate more, rated the experience more highly, and hung around longer.  Think about that the next time you’re deciding between the “value-menu hamburger” and the “Chiabatta bacon cheeseburger” at Wendy’s.

Expectations can also create what Wansink calls health halos, which can actually be quite dangerous to someone watching their weight.  For example, most people consider Subway to be one of the healthier fast food restaurants, but Wansink’s research shows that this knowledge can lead people to presume that everything at Subway is healthy and also that this gives them permission to overindulge there.  Subway’s sandwiches may in fact be a healthier option than, say, a Big Mac, but if one then orders double meat, mayonnaise, a large soda, and a cookie, the advantage may be gone.  Similarly, Wansink found that if people were given a bag full of granola that was (misleadingly) labeled low-fat or low-calorie, people would eat far more from that bag than other people given an unlabeled bag.  Low calorie doesn’t mean no calorie – if you eat more of a low-calorie food because it’s “healthy”, then at some point you’ll eat more total calories than if you just stuck with the regular version.  Even products labeled “heart-healthy” or “full of vitamins and minerals” – products making no overt claims about their calorie content – will be overconsumed on the mindless assumption that healthy in one respect means healthy in all respects.

The implications of Wansink’s work are simultaneously depressing and inspiring.  It is depressing to realize that so much of our food behavior is mindless and cognitively impenetrable – that is, no matter how much education we have on these topics, we will still succumb to these environmental cues.  (In one study Wansink trained students on the effect of package size on intake and even his educated students failed to moderate their selection of foods from larger bowls when put to the test.)  But on the other hand, these cues can be tremendously effective at reducing intake when arranged to our advantage.  Buying smaller plates, buying tall-and-thin glasses instead of short-and-fat glasses, plating food in the kitchen, increasing the apparent size of food by spreading it out or fluffing it up with air or low-calorie ingredients like lettuce on a burger, placing healthy items on the most visible shelves, placing candy dishes across the room (and in opaque containers) – simple environmental engineering can have a large impact over time.  Wansink points out that all many of us have to do is eat 100 calories too little rather than 100 calories too much and, over time, we manage our weight.

This concept of environmental engineering needs to become better known among our nutritional gatekeepers – the ones who buy and prepare our food.  Often this is mom or dad, but it also includes our politicians now that obesity has become a cause celebre and given that public school children get a large portion of their weekly calories in our schools.  So much effort is now being wasted worrying about what we feed our kids at lunch, and too little attention has been given to the environments in which we feed kids lunch.  Too much effort is spent on educating people about their food choices, and not enough effort on creating an environment in which people make the right choices whether educated or not.

Wansink’s book is about food, true, but it’s more about human behavior and decision making.  I therefore recommend the book to anyone who is a human who eats food.

The Big and The Little

spiderI caught a small spider in my room this morning.

It was a deft operation, because I didn’t want to kill it.  I like spiders – they eat a lot of things I really don’t like, like baby cockroaches, mosquitoes, and flies.  I used a small, transparent case to cover it, slid an index card underneath it, flipped the works over and put the lid on.

And then I got to thinking – what’s the spider thinking?  I suspect the spider wasn’t particularly aware of me – it was aware of the transparent case and the card and the flipping over – but it was hard to imagine it was aware of me.  And then I imagined some large beast capturing me in the same way, but I couldn’t quite do it.

Are humans large or are they small?  I think we tend to think of ourselves as small.  We know we’re not the biggest creatures on the planet, and we can think of any number of things larger than us that we wouldn’t want to be put in a cage with – gorillas, tigers, hippos, rhinos.  We know about the dinosaurs who once roamed the earth.

And yet none of those things, or elephants or whales or walruses either – could do what I did to the spider, which seems still more evidence of our smallness.  We associate agility and dexterity with smaller creatures – we’re agile and dextrous – so we must be small.  When I try to imagine a creature as large to me as I am to the spider, I have a hard time imagining such an enormous thing could also have the precision in movement to capture me quickly and painlessly and in that way.

How big would such a thing be?  An average adult male human is 2 meters tall, allowing for rounding to whole numbers.  That spider I would judge to be about a centimeter long, or call it 2 cm to make the math straightforward.  I am, in other words, just about exactly 100 times as tall as that spider is long, and so the creature capturing me in my imagination would have to be 200 meters tall in proportion.  For the metrically-impaired, that translates to 656 feet tall – just about 2 Statues of Liberty stacked on top of one another.

But that comparison doesn’t quite do it justice.  I’m far more threatening to the spider than 100 times.  My dominance over the spider comes not from the differences in our heights but rather our weights.  I didn’t have the presence of mind to weigh my little prisoner, but I would guess between 100 mg and 1 g.  This would make me about 100,000 times as large as my spider friend.  The equivalent beast to loom over and capture me would have to weigh over 16 million pounds, or 8,000 tons.  That’s the weight of 36 Statues of Liberty.  So now I must imagine the Statue of Liberty coming to life, doubling in height, becoming morbidly obese, and having the dexterity to painlessly capture me in 5 seconds.  That’s us, to the spider.

When you put it that way, we’re big – big and remarkably skilled.  Our motor coordination is good enough to capture the spider without hurting it, but we’re also powerful enough to hold our own in a fight with probably 99.9% of the biome.  The number of creatures we fear in a battle of size are few – but more importantly, even when you imagine the largest organisms on earth – say the blue whale – they’re not that much bigger than us.  Okay, they’re a lot bigger than us, but not relative to how much bigger we are than the world’s smallest creatures.  The blue whale weighs about 200 tons and is about 30 meters long.  So by both the length standard and the weight standard, there’s no comparison.  I am far larger than the spider relative to how much larger the whale is compared to me.

whale

Better, there’s no going larger than the blue whale.  It’s the largest creature that exists on earth and the largest creature to have ever existed on earth.  There’s many biologists that believe that the blue whale may represent close to the maximum size of a living creature.  Even if it isn’t, the blue whale would have to get much bigger to compare with me and the spider.

The kicker, of course, is that while we can’t go any larger than the blue whale, we can go much smaller than the spider.  To be sure, we can’t go much smaller and still expect me to be able to handle it so dextrously – the man/spider comparison is just about perfect for illustrating how different two things can be in size and still interact on some sensory-motor basis.  But just in terms of size comparisons, the spider is hardly the smallest insect, and insects are hardly the smallest creaturesdog-flea_1592349i.

Consider the flea (the giant scary monster to the right is an electron microscopic image of a dog flea).  These aren’t easy to catch, but we can sometimes see them and we sure as heck can feel them.  A flea is just over a mm long, making it 10 times tinier than my spider friend.  As for their weight, I struck out trying to find a reliable figure.  I was able to find an estimate of the weight of Flea from the band Red Hot Chili Peppers, but apparently there aren’t too many people weighing the fleas of dogs and cats.  (Ironically it is very easy to find the statistic that fleas can consume 15 times their body weight in blood each day – so somebody must know the weight of a flea – but I suspect that scary statistic doesn’t represent a whole awful lot of blood.)

Once we leave the realm of the flea, we leave the realm of living creatures we can reasonably react to with our unaided senses.  But we know that there are one-celled organisms, so we might ask: how many cells do our bodies have?  Here’s a secret – no one’s counted – but estimates range from about 15 trillion cells to about 70 trillion cells, depending on whether one estimates by volume or by weight.  Thus, we weigh about 70,000,000,000,000 times as much as a typical one-celled organism.  The creature compared to me which is like me compared to a one-celled organism would have the weight of 29 billion blue whales.

I would argue from all this that humans are not only large, they’re enormous.  We are right to be impressed and humbled when reminded that we live on a small planet surrounding an average star in a galaxy of 100 billion stars in a universe of 100 billion galaxies.  That makes our sun one of 1022 stars in the universe. But when you consider there’s about 1014 atoms in a single human cell, and more than 1013 cells in the human body, we’re in some ways about as big as we are small.  We are almost centrally positioned between the big and the little.

(To those of you who know that the name of this blog is inspired by an Isaac Asimov quote, bonus points for those of you who recognize that the title of this post, The Big and The Little, is taken from the title of one of the Good Doctor’s Foundation stories.)

For Shame: Tobacco-Free Campaigns Stoop To Anti-Scientific Fear Mongering

I’m in a difficult position in this blog post: I have come here to chastise an initiative that has done an enormous amount of good.  The campaign to dissuade people from smoking cigarettes has been one of the few truly meaningful successes of public health-awareness campaigns.  Many lives have been saved.  Unfortunately, some of the arguments used to dissuade people from using cigarettes are deeply misleading and worse, serve to undermine other public health initiatives such as childhood vaccinations and healthy eating.

Consider the following stunning graph:

Cancer in the USA

As shown, while death rates for most cancers have held relatively steady over time, death rate for certain cancers (age-adjusted figures) have varied.  None have done so more dramatically than deaths due to lung cancer, which were virtually unheard of prior to World War II, climbed to alarmingly high levels by the 1980s, and reversed dramatically at an almost equivalent rate thereafter.

The single most important risk factor for lung cancer is smoking cigarettes.  The reversal in death statistics owes little to new medical treatments or tests, and must be attributed mostly to declining use of cigarettes.  This in turn appears to have been caused by two factors: education campaigns and financial penalties (cigarette taxes).  I am usually highly skeptical of educational campaigns (human behavior is frankly far more powerfully influenced by unconscious factors), and politically I am opposed to coercive taxation – so in admitting that the tobacco awareness campaigns and taxes have been successful in saving lives, I am responding to data, not wishful thinking.

This good end, however, does not justify any means.  I am deeply disturbed when Tobacco-Free campaigns play fast and loose with science in an attempt to be convincing.  In fact, certain messages provided by these campaigns may actually be detrimental to public health, even counting the lives saved from lung cancer.  Consider the following public service ad:

fact-id-19-formaldehydeExecutive summary:  A biology class is preparing to do a frog dissection, and so each lab bench has a frog floating in a jar of formaldehyde.  One student picks up the jar and greedily gulps down the formaldehyde to the horror of her classmates.  We are then told that cigarettes also contain formaldehyde, and we are invited to conclude that smoking a cigarette is tantamount to drinking formaldehyde.  (A much ballyhooed recent study also touted the fact that e-cigarette smoke may contain formaldehyde as well – though very likely fears of toxin exposure via vaping is completely overblown.)

To be sure, the ad is not incorrect: cigarette smoke does contain formaldehyde.  The ad is also correct that formaldehyde is a primary constituent of formalin, a solution commonly used to preserve cadavers.  Unfortunately, though, the ad is misleading in a way that strikes at the heart of fundamental scientific truths.

The first truth ignored is that the dose makes the poison.  Obviously, smoking a cigarette is not equivalent to downing a whole pint of formaldehyde.  According to one study linked above, the amount of formaldehyde in the smoke of a full cigarette ranges from 3.4 micrograms to 8.8 micrograms.  According to the material data safety sheet for 37% formaldehyde solution, the LC50 for rats (the concentration per liter that would cause death in 50% of subjects by inhalation) is 578 micrograms over a 4 hour exposure.  Compare this again to the 8.8 microgram/cigarette.  We’re not in the same ballpark.  As for the girl drinking the fictitious pint of formaldehyde in the PSA, the oral LD50 for rats is 500 mg/kg (a rat weighs about a third to half a kilogram; a high school student weighs about 50 kg).  Mind you, I’m not recommending anyone try this experiment, nor do I think it’s a particularly good idea to drink anything your biology lab instructor sets out for you, but let’s get a sense of perspective here.  There’s some nasty consequences to smoking lots of cigarettes, but it’s a reasonable guess that inhaling a little bit of formaldehyde causes none of them.

The second truth that is ignored is that magical rules don’t apply in the real world.  The fact that formaldehyde can be used as a preservative (at high concentrations) does not mean that formaldehyde can have no other functions at lower concentrations and in other environments.  A pear, for example, contains about 60 mg of formaldehyde.  Human blood contains about 0.1 mM formaldehyde generated internally by the metabolism of certain amino acids.  Our bodies constantly produce formaldehyde, though in very small amounts, and these levels never rise particularly high because formaldehyde itself is quickly metabolized to other products which are less harmful.  Again, it is not a good idea to challenge this process by obtaining a lot of formaldehyde from exogenous sources, but eating a pear shouldn’t be particularly troubling.  Smoking a cigarette is troubling, but not because of the formaldehyde (though inhalation is a far more dangerous method of delivery than ingestion, as indicated by the toxicity statistics above).

flushotingredientsWhy am I complaining?  I don’t like cigarettes – and the ad is certainly gross and therefore probably somewhat effective.  The problem is this: formaldehyde in used in some vaccine formulations.  According to the FDA, formaldehyde is used to inactivate viruses and alter products of some viruses to render them less dangerous.  Residual formaldehyde inevitably remains in the final dose, but at such insignificant levels that it’s ridiculous to worry about.  This is made dramatically clear by a number of memes that have attempted to counter misinformation about vaccination:

pearformaldehyde

formaldehydeexogenousinternal

Dose_Makes_The_Poison

Thus we have two important public health goals, which have been unintentionally and unnecessarily put at odds with one another: curbing smoking and vaccinating children (and adults with the flu shot).  By demonizing formaldehyde at the low doses it exists in in cigarette smoke, the Tobacco-Free initiative has given license to anti-vaccine activists to use the “contains formaldehyde” argument – they have tacitly legitimized that argument.  Indeed, by extension, arguments about thimerosal – another sometimes-vaccine constituent which is safe at doses used – gains strength as well.

Beyond formaldehyde, many anti-tobacco campaigns play fast and loose with another popular scientific misunderstanding: they play on people’s instinctive fear of chemicals.  As the second formaldehyde meme above demonstrates, a chemical is any molecule, and molecules that are synthesized in a factory and put to some gross-sounding purpose (like embalming using formaldehyde) are nonetheless identical in all respects to the same molecule produced by a natural process and put to some good use (such as the formaldehyde produced by processing amino acids in the body).

everything chemicalsThe popular figure appears to be 4,000.  On a number of smoking cessation sites I’ve looked at at random, I’m told that “cigarettes contain over 4,000 chemicals”.  This is presumably supposed to scare me because – chemicals.  But the number itself is just meaningless.  How many chemicals does a pear have?  In a recent blog post I showed the “ingredients” of a banana, and I also reported that cotton has 45,000 genes (each of which must make a protein which is, yes, a chemical).

Often I’m given a list of examples of scary chemicals in tobacco, including everyone’s favorite bugaboo formaldehyde, but without the proper context.  For example, even the American Lung Association pulls this crap, telling me not how much of some chemical is in the cigarette, but rather, what other products use that same chemical.  Here’s a sample of the useless trivia they give us:

  • Acetone – found in nail polish remover
  • Acetic Acid –  an ingredient in hair dye
  • Ammonia – a common household cleaner
  • Arsenic – used in rat poison
  • Formaldehyde – embalming fluid

Think of the smell of nail polish remover.  We’re invited to think that we’re getting that much acetone?  Or ammonia.  That much?  And acetic acid?  I enjoy that on my salad along with a little oil, oregano, and pepper.  Fear mongering scare tactics are usually the ploy of purveyors of pseudoscience; it is depressing to see such an august institution as the American Lung Association stooping to such cheap tricks.

Some of these sites “helpfully” go on to tell us that of these 4,000 chemicals, some number are known carcinogens.  Well, that’s not surprising either.  Carcinogenicity is unfortunately often tested with unphysiologically high doses, leading to many chemicals being classified as carcinogens on the basis of unrealistic tests.  As the eminent Bruce Ames has argued, unrealistic testing has caused us to greatly overestimate the potential cancer risk of many things we are exposed to.  This problem is so significant, that when I see 69 out of the 4,000 chemicals in cigarettes are known carcinogens, my first reaction is to shrug my shoulders and say “Is that all?”

Please, please don’t misunderstand me.  We know that cigarettes vastly increase the probability of getting cancer.  We know that the number one cancer prevention tool we have in this country is smoking cessation.  The importance of avoiding a smoking habit cannot be overstated.  Outside of the occasional experimental cigarettes bummed from friends at parties in college, I am a non-smoker and I earnestly encourage anyone I know who smokes to quit and anyone who hasn’t tried it to avoid starting.  I also want to be clear that avoiding exposure to formaldehyde, acetone, benzene, arsenic, ammonia, and a great number of other compounds is absolutely good advice.  As a neuroscientist, I’ve interacted with many of these chemicals, sometimes in undiluted quantities, and I can attest that being in the same room with them is quite unpleasant.

But I must insist that as we are educating the public about issues of health, we must carefully do so in a way that doesn’t feed into the common misconceptions about chemicals, toxins, and cancer.  We must not give fuel to the pseudoscientists out there who are busy demonizing such important advances as vaccination, modern agriculture, and genetically modified foods.  That makes our job harder, but it also makes our task righteous.  Educating science is a long-term effort, and we can’t lose sight of winning the war for the sake of an albeit important battle.